
OT[C f-IL-E WRY0•

CLaSSiC Project February 1987
Manuscript CLaSSiC-87-17

Lt Copy Elimination with
Abstract Interpretation

K. Gopinath
John L. Hennessy

DTIC
E L ECT E
APR 2 11987-

E

Center for Large Scale Scientific Computation
Building 460, Room 313

Stanford University
Stanford, California 94305

87 3d

Copy elimination with
Abstract Interpretation*

K.Gopinath and John L.Hennessy
Computer Systems Laboratory

k Stanford University

Abstract

Copy elimination is an important optimization for implementing functional languages. Though it is

related to the problem of copy propagation that has been considered in many compilers and also to

storage compaction, the term is used in a more general context where structured values can be updated

and the computation tree can be reordered. Because of these two additional possibilities, copy elimination

is a hard problem, being undecidable in general.

We propose an optimization approach based on abstract interpretation which uses fixpoint iteration for

computing addre8a expressiono. These address expressions supply the final target for a computation,

eliminating the need to copy values through intermediate results. Our work is in the context or a single

assignment language called SAL. Our implementation has an operational model for computing address

expressions by using reduction rules. Using this, we show that copies present in divide and conquer

algorithms like bitonic 8ort and quicksort can be removed. We evaluate the effectiveness of these

optimizations, showing that in many cases, we can come close to the efficiency of an imperative language.

We present some data on optimising some small but tough benchmarkb. (

Accession For

NTIS GRA&!
DTIC TAB
Utannowiced

Distribution/

Availability Codes
Avail and/or

Di st Special

* This work was supported in part by the Office of Naval Research

Contract N00014-82-Y-0335.

T% an -

Sk'.me MMAN

--

DIECLAIMEg
\ %Cr

THIS IOCUMENT IS BEST

QUALITY AVAILABLE. TIM COPY

FURNISHED TO DTIC CONTAiNED

A SIGNIFICANT NUMBER OF

G E ,5 WHICH DO NOT

~ T'RODUCIY- E 7BILY.
THIS DOCUMENT CONTAINED

REPRODUCED FROM BLANIK pAGES THAT HAVI

BEST AVAILABLE COPY BEEN DELETED

Table of Contents
1. Introduction 0

2. Abstract interpretation 1

3. Assumptions 1

4. A Denotational model 2

4.1. Preliminaries 2

4.2. Standard semantics 2

4.3. Non-standard semantics 3

4.4. Discussion 5

4.5. Elimination of the standard semantics 6

4.6. Some results 6

4.7. An example 7

4.8. Applicability to other functional languages 8

5. Copy elimination in SAL 9

5.1. Computing Address expressions of SAL constructs 10

5.2. Computing address expressions using reduction rules 10

5.3. Examples 10

6. Fixpoint computation using reduction rules 12

6.1. Extensions 13

6.2. Algorithm 13

6.3. An example: counting permutations 14

6.4. Divide and conquer problems 14

7. Experimental results 18

8. Conclusions 19

Copy elimination with
Abstract Interpretation

K.Gopinath and John L.Hennessy
Computer Systems Laboratory

Stanford University

1. Introduction
Copy elimination is in important optimization for implementing functioiial languages. Though it is

related to the problem of copy propagation that has been considered in many compilers 111, the term is

used in a more general context where structured values can be updated and the computation tree can be

reordered. Because of these two additional possibilities, copy elimination is a hard problem, being

undecidable in general. Copy propagation is adequate in imperative languages at intermediate

representation level since the programmer takes responsibility for avoiding any unnecessary copies in the

source language, such copies being considered a reflection of poor programming. In functional programns,

however, the lack of variables in the language requires that a value incrementally different from some

structure be expressed as a new structure. This may involve a copy depending on the prograin semantics

and the implementation. Copy elimination also differs significantly from storage comipaction where the

issue is the computation of a program in the smallest amount of storage. An effective storage compaction

scherne might avoid all the copies at the samet timie but likely to be expensive computationally, since

attempt is made to assign even unrelated nmames into the same storage space, p~artially or fully, as long as

they have non-overlapping live ranges. The latter strategy is useful in the ca-se of limited resources like

registers but minimizing main memory is Of less vaIlue.

InI this paper, we will Ilse tIle tuchn~ique of ab.stract. hitcrpretation for copy elimination. Ahbs.racrt

iflierprel-ation is a t~echnmique that wa's pionleered by Cotisot amnd Cousot!..-)I for deriving lproltt'rties of

IprograIni-. Using this approach, Alan Mycro't. 1121 coilsidlered the problvlLim ol' detecting whein a (all-by-

nleedl argiliin lit, (-.ill bet uirnied illi() .1 (c1ll-by-vnflll(ni-gutmieiit ill t ie iIntei('t.- of uIllivimicy. IIuidnk 9qý Ill lis

i.-c, it. work h as usea d dii ve lehiniique successfully to Ic tiel t u pdat es ti i a cm) 1e)V(oll c inl- pimce by) relemefliee

coun11ting. We will 1use abstract, inlterpr'4it ion to efli liiititt copics aIlso. 'Illis approach illvolvv$ fiXpoilit

iterationi For coimliplit lg (I(IIIT,.N *.rpirrxioiis Iii the prvtsmncl ol, n-clInSIN- 'l luugt ioins. Thesea'rvs

expl--ioii5 C;1j1 be Iler-l (o (olliplite t111- 1,Iln l Iargr :I't i- Fc ri ' : I I ' o elimuiniating imnterijiediait

tuul s 14)1 insgut,g ,m liset. 4) Nr i ligI a-ppigmiImmem wil uI)u', ',ii'edt olpt ..I. \ ;ld rv s Iin 1 I*.> ri 1 0i o m

rfAlfo ilt d':uihn g how,; uislgl maIs, m nit ei~lat 1411(i lie d i-il _ ri i;g Nt I; 1'. I Iti liiiofi~ 0!,~Iw

t11. o 1a.1m i. (,J~il- Ill li I4 im)i roiiiticr iiiih hiii luk, itiii4i*-4i I ;11- i1,114ýl ~it ir WlId %%1.11114.

which are very close to those for imperative languages like Pascal on a set of small, but tough

benchmarks.

2. Abstract interpretation
Let the standard denotation of a function definition be t / C : D - R. Abstraction functions are

then defined to "simplify0 the domains of D and R. If two such functions Abel: D --I Al and Ab2: R -

A2 are chosen properly, the function f : D -- R induces another interpretation - abs-f > : Al - AR

which can be used to answer some of the properties of f. This is the central idea of abstract

interpretation. A good example is the function type which abstracts just the type aspects of a function.

There has been considerable literature on using abstract interpretation for computing strictness of

parameters.

We use the abstraction Addr for both Abel and Abe2 in our application with both .41 and A2 being the

domain of address expressions. The abstraction Addr maps names into their symbolic addresses and

expressions into address expressions. Analogous to type expressions, address expressions describe the

address of an expression in terms of the parameters. These are similar to the effect-declarations of

Schwarz 1131. The mapping abs-f gives the properties of sharing that is possible between arguments and

the result of a function.

3. Assumptions
We assume a simple language similar to the one considered by Hludak [9]:

Program is a set of recursive function definitions (without higher-order functions)
fi:--- X,n bodyi

with main program being a call of f, with zero arguments.

Tre pro'derined Ftnction1 p. are aw follows:

"* standard arithmetic, boolean and array selector operations

"* conlditional: if 1) then c else a ablbrelviatedl as ifp.ra)

* creaut.l array rinelion: nka(boimd.s, It) wherv bott•iund.-; i;m fil tilier anllge. n id /I is So111e
I llnetloll which iiil.s jollpd.,• teo sonlIt i llllge st-I..

"* UlpIi.i 4 'biriiiilow: updi.-.l I) II&i " .i alt . ,l I* ;. iaiElleX I1.1.4, -i "ill I' I" ofl Ihe Sahilt,

I''•, as T's elvinl .it•s :n'd it's v'"ll1, is sailli as ,i1l airly -1 4'× jt l . Iaht iOw , 10 O it.ioln whl't, it is

"I - qw'€tll ,ll 1'im llllim rl seq(ý.1 /./i) %O wni~, .1 i 1ý M I l ,iyA ;Vll(I I 'Ind• 111 :11", h14-•m l ind~ic,'. illl() J! :1l111 i1"-

Il•w;illil!• is illl ;iý IIh,, ofl~i''iv < .1 ali l ll4 :l ilidv.• I ;,lidl v'i~lhd 4 ;ill, 'I'lhi w ill 1,4.

,lt~hl'. liltc l I 1 T . .. ,,

3

'4

2

* catenate function: cat(A,B) where A and B are sequences. For purposes of optimization and
the non-standard semantics that will be shortly developed, it has the following meaning: if
A=a[l..m] and B=a[n..pl then cat(A,B) is a[l..pl if rn+l-n; otherwise, a newly created array
cJ1..m-l+I+p-n+1] where c[1..m-l+I]=a[l..m] and c[m-1+2..m-1+I+p-n+l]=a[n..pJ

We adopt the convention that an identifier in bold italics represents the address expression for the

corresponding identifier written in italic-. We adopt the same convention for representing terms in

standard and non-standard semantics.

4. A Denotational model
We use a denotational model for the simple language to show that fixpoint computation of address

expressions is possible and that they terminate.

4.1. Preliminaries

We adopt a slightly modified version of the notation in [9]. Double angle brackets are used to surround

syntactic objects, as in ECexp>.. A new environment is created by [el/X 1 ... e Ixn] which is abbreviated

to jei/x.] when the subscript bounds are clear from context. The notation A* -. B denotes the domain

B+(A -- B)+(A - A - B)+ • • - We also assume that all domains are "lifted I as necessary, i.e., they are

provided with an unique least element. We will refer to each of them by _l instead of different ones for

each domain.

4.2. Standard semantics

Let D be some suitable domain of basic values. For the standard semantics, we have the following

domains:
C,p E Con (constants including primitive functions)
z E Bt (bound variables)

f E F', (function variablhs)
body,e E Exrl (vxpres;siolls)

where r::- .r Ix Ip(I...,r,,) f((' ,,)

In, E Prog (progrims)
whelrem pr;: -=

SJ1(.r . .. ,.l) 4bo ,

D .two 4i'(i if I'v. jit or Imin ;.rol lm l Ln �.. '.., f' b lll. i L I b I I
"f-lljmilic 1,1111(1 oll ,Iol k 11"ii 1111,;1161111 i~gi~i :1114I op iio P.a41 I~~lP o l~ ld

II

.I .1

; s v - ? -

- sr.-~~an n-a w..l-~ - ----------

3

Pve E Fve-Fv - D* -. D

bv E Bve=Bv - D
E :Prog - Fvc

E:Exp - Fve -. Bve -. D
K:Con Exp* -- Fve - --v D (assumed given)

The semantic equations are as follows:

* {C(jxj,...,zm)-bodyili:1..n} > -fte wlererec fve= [E -C bodyj > fve bye / fi

E < c > fve bWe K < c > fve bye
E < z > fve b•e bve < z>
* < p(e! ,e) >• fte bv--- K <• p >• (E < el > •/t"• bt), (E <r e. 3p fve bve)

E* f,.e 1 e) > fve bve- fve -C f2 > (E<C el > fve bve), ... (E < e > fve bye)

4.3. Non-standard semantics

Given a program, the non-standard semantics derives a set of recursive equations for the address

expressions of functions which can then be computed by fixpoint iteration.

Let G be a set of names for anonymous arrays created by mka, cat, upd array operations and also

arrays created by if expressions so that there is a i-I correspondence between occurrences of these array

creating operations and the set G. Let each of these operations be labelled with an integer value so that

the symbolic name for the i th occurrence of any of these operations considered together is gi" Also let

F(A) be the powerset of A.
x=Addr(x) for each x E Bv U G;

X= {iix E B1, U G)
G {zlz E C)
RN be the subscript range of an array x; assume that z[RNz] is alwaiys rewritten as z

A -= {zI..nz]Iarray x E Bt U G; 1,m E RN} - X, so that A and Xare disjoint.

AddrExp=={I_,T} U FX) U FA)

AddrExp is a pointed cpo with the following partial ordering:

I <(a .- ý'T,a E AddrExp

a<---=b if a C b

I ! and T ar- th,, , ty and 111,ivers.. t't respectively. We (lefi'ne two nOiootonic operaitors pL and 1i (used

for defining the semantics of if and cat re.spectively) over the domain AddrP.xr, as follows:

4

tt4a,b, g):
=0 3 aa C a &bb C b such that aa E F1(X) and bb E F(A) & vice-versa

=-g B aa C a & bb C b such that aa E }G) and bb E FýX-G) & vice-versa

=g Baa Ca & bb C b such that aa=-{zjl..mt}, bb={zxn..p]}, (I ý4 in or m Vp)

=9 3 aa C a & b6 C b such that aa={z[1..rnjj, bb=jy[n..pj}, zx y & 4,Y E C

=g 3 aa C a & bb C b such that p(aa, bb,g) E G

=a Ll b otherwise

14a,b, g)
={Jxl..pj} if a=-{z[.mI} and b={x[n..p]} and n=-m+1.

=g 3 aa C a & bb C b such that aa E F(X) and bb E R•A) & vice-versa

=g 3 aa C a & bb C b such that aa E P(G) and bb E F(X-G) & vice-versa

----g0 3 aa C a & bb C b such that aa={zxl..m]}, bb=(--{[n..pl} & it 3 n+1

-- 3 aa C a & bb C b such that z(aa, bb, 9) E G
=- 3 aa C a & bb C b such that aa={xl..rnj}, bb=[yjn..p]}, x3 y & x,y E G

I is the bottom element for the cpo, signifying null information. If the two operands are incompatible,

the symbolic address for the anonymous array (passed as g) is returned.

We have the following new semantic algebra:

Loc=AddrExp
Bve=Bv - Loc

St=Loc - D

he E Fve=Fv- Loc* - St -" (LocXSt)

EE :Prog - Fve

EE:Exp -. Fve -- Loc

KK:C-on - Exp* - Fve -- Loc

The semantic functions for the abstraction have somev tutsual features. They dep)end on the standard

semantics also. Hlence, a product construction is needed to describe the semantics. For simplicity of

presentation, we just presenltl the 11011-Stlalnd(1aird seliantics, the plrOhlCot eo|nStliC('tiOnI be ing ulnderstood. WVe

will discuss how to eliminate this dependence on the staihda'd semaniics sincce discovering properties at

compile tim1e for optimization purposes Is not l)Osihle otherwise. In addition, wNe have th-, problem of

nonl-terlmlit ation in the staldar(d selllaiitics W e 1m. the 1)ltat~ion ()!tb for the h label Correspotiding to

EE P < 1,(.,I r)=-b,,dyjji;•:I.,, >> fve wh,-rerec fe 1,1 ...< ti,,,. >> fe fiI

E E< c > .fve T
EE <<, .r 't fve -- x
II << a, ith, -bool » t I ye h

i[<< f(..... ,) >> fVe fve << f >> I.' ,t fve .1 lPl.< >> fte

KI< C It >. cond coneeq nit fue
let

t11:ZEE < conoeq > fue

t2' al <nt > fv.
In

end

KK -C cat > A[l..m1 B[n..p] fve
let
ll:==E -C I >. fve bye
mm:-EC m > fve bye
nn:-E < ni > fve bye
pp:=E < p > lye bye
t1 :=(EE <z A > fvc)[LL. mmj

t,:=(EE < B > fve)[nn. .pp]

in

end

KK < mka > botrnd8 ht fve
mka

*KK < upd >A iv fve
let
t:=EE C A > fve

in
if A is not live then t else ,b

upd
end
(*liveness can be deduced by using H-udak's (lenota~tional semnantics for reference

counting by using a product construction; -see. discussion l)elowV*)

4.4. Discussion

is or m cannot he simplified to g if' the subset.,; aa or- 1b are bothi front IIX) or I1A). Consider thle

following function-

function Q(A,B:arr):arr-=if cond then A4 else 13

Q=XA B. (A. B3)

Since Q canl be called wit~h arlbit~rary paraniont-ts .1 ffld I), It, i, I)(-t possible to (letcrililnich 'Id dre~s

x p ressio n or11Vfti liici.ionl) ody~ ill a formii simpiler(thain IA. B). 11' this is simplilwtd to 9, r his nay wi , i

III siini.i liiihoii11,1tioi a)o~itl what. (anl b(- .harted ill cmse Q is called withI actlnal jaraII*ters Suc*.ýIh thail

AvxB. hI. might, be ilimight. ibiat. 1,11 prohIcnl (.Iln bf. villuiu 1tvd it i 11111(1 iOIhI. l-in-hud blli we Sit' :

1)1oll(Il il h, k~ o ilgv ~ ilp , wh ci (:Illl l)" il-ll-d-

- I 4 -- - 4 -%

6

f(a,b,e)=
If eondl then cat(a,b)
elaif cond2 f(upd(a,i,vl), b, h1(c))
else f(a, upd(b.j,v2), h2(c))

f-Xabc. v(a,b,g1,bcat) U f(a,b,hl(c)) U f(Ca,boh(c))

The expression in the then part cannot be simplified in the abstract interpretation to g. if f is called in

the form: I(A1..ml, B[m+1..n],c) with A=B, then we get pessimistic answers. The simplification to g

results in the failure to propagate information across function boundaries. This is not just a theoretical

possibility; the bitonic sort program has this property. A similar problem exists in strictness analysis [8].

We need to make some small changes to Hudak's semantics for reference counting: If eat(A[/..mi,

B[n..p]) can be updated in-place because A-B and n~m+l, the reference count for A does not decrease.

If this is not the case, the reference counts for both A and B are reduced by one, just as in the standard

semantics.

4.5. Elimination of the standard semantics

We next discuss how to eliminate the standard semantics from the equations. Consider the equation for

cat. One of the conditions for computing v is (n-m+1). Instead of evaluating this by using the standard

semantics, it can be checked by symbolic analysis if the syntactic expressions for n and m are of a

particularly simple nature, namely induction variables. The condition nman+l can be checked by

matching subtrees of n and m. If the expressions for n and in do not satisfy the simple syntactic criteria,

the value false is returned. The abstraction, in this case, errs on the safe side. Also note thatI

computation of II and pp is not, necessary. Similarly, the check (1 n or I I 1i) for compulwig p cal he

carried out symbolically. The new semantic equation for cat is as follows:

KK < cat ;5> A[1..mil Bin..p] fvc -

let
t I:ý-EE < A i>, fve[< I >*..<, In >,

t,4:-_EE B 13 >fve-< n >_< 1,>J

in
14 t I ,t2, gla .t b.ILA

end

4.8. Some results

Theorem 1: l'or any 'init.' progrnin 'roq Wi wilh h(tl(14'l plrre P (.). thI. I-' ixl)oill-
corcl'"Otl~lditg (oft fE Fv art. , oinFUlablv,~.T

Proof: .Ahlrl.'-, is a 'ijitce rpo, Also. I., INN I,." collI4 '4101 1 tll)II IIl()l)i4v),p,4ralioi,.. IhIel,' fv' r

(.;III bo (II,,,l''v t-iv,'!.N, r'(ll il,.rd Ib y FI' Pillo it it,.i 11oll(i ..t;ll'ttilg w.I. IIl liw ,:lt-ll ,iu ,n :kldl~ 1 ,%i| ln,'rIit: t il c 5i,

last hel or 11',t11i4, i I',C1ah,' ,.)
TLh eorem 2" I1' Ihi I'i~;l-,i~l ululti,,n ,,If (-: Fo i• .InI•, x u. tiel,, I, \ ,I Iit Ilutlt~iiI|

7

be targeted to x and x can be updated in-place in the body of fI to give the result of the

function.

Proof:The proof is by structural induction on bodyi. Since f, is a fixpoint, fh(x)=F(fh)(z)= x.

Consider the following cases for bodyi in the semantic functions EE and KK:

x: If bodyi = x, the result is immediate.

h(e11 ... ,e.): If has r as fixpoint only if the abstraction of h maps some argument e, into z. By induction

hypothesis, h's result can be obtained by the update of this argument. Hence f,'s result can also be

obtained from the update of the same argument.

if(cond,conseq,alt): fi has z as a fixpoint only if both arms of the conditional map to the same address

expression. From the induction hypothesis, it follows that the result of the function is given by the update

of the parameter z if cond is true and also by z when cond is false. Hence the result is given by update of

X.

eat(A[l.,m],B[n..p]): .f has x as fixpoint only if both A and B are mapped to z and n=m+1 with I and

p as the lower and upper bounds of z. Hence the result of the function is given by update of x if cat

function is in-place for this condition.

upd(A,i,v): Again, f, has z as fixpoint only if A is mapped to x. If A is not live then x can be updated

to give the result of fr

mka: This case cannot give rise to x as a fixpoint, hence vacuously true.

This completes the theorem's proof by structural id(tiction.

Theomem 3: The abstraction is safe.

Proof: The proof is by structural induction which is oiiittcd,

4.7. An example

'T'o illustrate the Iion-.Lsuandard semllaliti'cs givl! ahbov c Considcr thc plrograin for r,0Ie'e rsitg th.l cvIc in 1:1

of ani array:

function si.vaj'a2(: ' lr:1i1: rn i t . integer ,j: integer) (•lrr=
upd (upd (.-1, .'. 1j) ,J_ 1)

function ri(. (p. -q (iiii(1, i• 1, (ill 1, i, . nteger)- -
.if itiz or ,'=n/2 then I!
else iij ,-(. [j-421, U , A [/-!] l, '(f'(.\, .11p, .Aq, ,)-,*1 i),

i1l .

assignments. When the abstraction Addr is used, the ncw interpretation of the two equations for &swnp!

and rev by the non-standard semantics is as follows:

function awa~pR(A:arr;Ai, Aj:arre/emi;i:integer;j~integer):.arr== {A)

function re,.i(Ap, Aq:arrelem;A:arr;i, n:integer):arr=

(A) U (rev(A[n-i+2], A[i-1], A, i-1, n))

Since swapR occurs as a leaf 'n the call-graph, it is advantageous to rind the interpretation of 8wap2

before rev, The new interpretation of swapt is computed to be just A by using Hudak's semantics for

reference counting whereas the interpretation for rev has to be found by fixpoint iteration as follows:
revo:=jL
rev I:=={A) u L:~={A1
reu2 :={A} U {A}:=I{A}

Hence, abstract interpretation of rev under mapping Addr is just A. Hence the result or the function can

be given by updates on the parameter A from Theorem 2.

4.8. Applicability to other functional languages

We discuss briefly the applicability of the approach wve have taken for copy elimination in the context of

features that are not present in the simiple language considered.

Call-by-,ieed,'eall-by-valuc,'lazyj evaluation: A perusal of the non-standard semantics shows that these

evaluation mechanisms make their effects felt. through the computation of liveness of names. Hudak and

Bloss f 2] have considered the problem of compuiting the order of evaluation of subexpressions in the

context of call-by-need parameter evaluation inechanisin and this can be used for determining livenessA.

Lazy evaluation, which differs from cnll-by-nevd in evaluating an expression more than once if needed,

presents,- considerable difficulties. If infinite structures nrve present, the structure is live and lazy evaluation

is needed. We, therefore, need analysis to dletect. if a structure necessarily has to be evaluated by lazy

evaluation and analysis to convert lazy evaluation to call-by-need or other forms, of evaluation.

Wadler]i141 conisiders somec of these issues for a limited casof situations arising in pranctice.

Higher-order function.-: I liglier order functions could be handledi if luidak's semnantics cani heC C~tel(ltd

to hiighe n-order fu iic t.ions (wh i ch hia.- not. been d on e yo(t.) . 1Even wit il tli i a.SSi liii)[ion . terl' U iii: loll c:1 fl '10)

longer be gnara nieedl. To see whly. Conside~r thlesme hlanguage extenldedl with hligh~n er Itdi. inciioni.'

The newv domainis are ai followvs:

rep E C'on (comistaut1s ncil(ld~iig p1)111.c Iniivfl~lleions)

filu ruina E F,) (Nfilleliomi va-inblves witl i odlic' anld allol~vlbnonls 1 iilubla plsil

Inlj.C 131 lip lil v:1xprbvssnloldgl,11)il

EE4C! fi > fe = i
EE C \z.e > fv. = Xz. EE C e ;X jue
EE-C > Ac E 1 . E l u E< , u

The above semantic rules cause the evaluation or the function part of an application since there could be

anonymous lambda expressions.

Let us see why there can be non-termination. Consider the following program:

fAh.a.b.0)
If cond tll~en h (h: h(h, .ab,0), b,c0
*1lse f(h,upd(a..~v1), upd(bi,jOv), Ace))

Using the non-standard semantics, we have the following fixpoint iteration:

fo := ±_
f1:={h(h,h~hiG,b,c),h,c)) U IL:={h(h,h(h,a,b,i.), bi,c))

fl,:==(h(h,h(h,o.,b,c), b,c)} U {h(h,h(h,a,b,c),b,c))]:{fh(h.,h(h~a~b,c), b,c)}

Consider now the self-application of f by substituting f itself for h. The fixpoint is not defined because of

the non-terminating computation involved.

5. Copy elimination in SAL
SAL is a single assignment lancuage defined at Rtanford 131 providing iteration, parametric types and

streams with scoping mechanisms similar to Algol languages.

WVe briefly des;cribe some of the constructs of the SAL. language:

e simple let-cxpress*.on: allows for bindings of values to names.

II array former: sp~ecifirs an order-independent itecra' ,oi (for alfl) which 1)rodtices an array

result: for i:l. in be cxp, which is similar to mka(bounds, h).

Il redefining let-expressions: impjlemnent~s iteration with loop dependlencies; th. -senlantics aire

Ver V close to what. is found in VAL and SISAL. The iterative statements have :I set or init.ial

Valtie diefiniitionis. a corresp~onding set, of redefinitions used to deline new values onl every

itt ra tion a loop~ control, and~ a reilt v alit d efinted inl t-e mIls of (Ie ri i l V alit es of' 1.1t. n amies inl

Ill. It-dfinlit ions. T'o he ablie to %pecify the redefumi itions withou1t, anly il iiplied sequencing, the

kr %vornd old is iised to refer to the vat i e of a ii a1iii4. inl t hel prev ious~ i ternmlion E'vry redIefli ni ng

ht't.(N~tiS call bea uvwriWitteil using only tail-mvccumsive funictions.

"* constructor; ceatmes strmeut~rcel values, Similar to aggregates in Ada. (.onsitirctors are often
used ? ai lu ; b hanll side consisting or mutiiitlt v components as ill N-11, awl ,\lgoltiS

"* new array-ttii a v~ult which nIatefies, the arguIttuen.11 aumay utV 1? ith W necl ()1((.(poi i J valýl

'Iyiigd: -h:- i' which is samte :v, upd(A,i,t')

"£ rpeorot field selector array element selector. eet'ip'at~, ill 1ccuId ;k.~tldauu

"* insert, vxpression: i 1w r''lmIt loll O(IIiti s'lul 1(n Owi nq.1.1toI ill VP

10

The atomic datatypes are integer, boolean and reals. The structures present are arrays, records,

discriminated unions and streams. For simplicity of presentaLion, we deal mainly with arrays but many

of the issues discussed typically arise in records and discriminated unions also.

6.1. Computing Address expressions of SAL constructs

The address expression for a simple let-expression is easy to state but redefining let-expression are

difficult to handle in the presence of optimizations (sharing between new and old values which requires a

form of dependency analysis considered in vectorizing compilers) needed to implement it efficiently. This

makes computation of the address expression using denotational semantics difficult. We will, therefore,

develop an alternate approach to tackle this problem using reduction rules.

Constructors enable more than one value to be returned. This is especially useful for implementing non-

locals by returning updated non-locals alonr with the result of the function value. We need an additional

semantic equation:

The domain now has a more complex cross product structure.

5.2. Computing address expressions using reduction rules

A reduction rule describes how the address of an arbitrary expremioin can he reduced into an address of

a simpler expression. Each reduction rule has two components, a cond and a reducttion rule, the

r'eduction being performed only if' eond is true. Define terminal cxprrosion as the irreducible term of an
exp~ression.

A set, of reduction rulh.. is presented in Figures 5-1, 5-2. Tl'lhiem. rle.s are not comipjletet 1nd(do i1ot take

into aiCeoln in alny sidlel letais I thil, are imniportat, in opl, iiizaition. D)ue, to lack , spleace, we, alo do not.

consirlI.r dlepenldent iti trations, Ioilgh we consider eXaliIi.) ls whIiVIi hiUivc thc1A ,e omii.lrilctS.

5.3. Examples

(ojisller dIti follow'illg 1proglai:lI
-- initiallses all the eloments of an array.
type ,r,'array [1. .i] of integer;

function ;itil (ri ; f.ir, it,: integer) . err1if ,1=0 then a else ,, it (I : -. r .r, i.- I)

I'l.I S 11. roillpill ie II~v a(llI.is it.X l -'il Siolil ofl IhII[fgiil tie i ON-uy

Addr(lf 1=0 then I eltse ild (a Ie->.t' .r s-'))
-- if ,=0 then Addr(,t) else Addr(iiI(,',->. .r ,-i))

Adrdr(if cv',,ddi•, i then A (lIs(! if I'''iI4 i,I/ then A ddr(.) else A (drr)

N1

• tt IU ~ l' ,'d lt'l rH I ;I l' , •-.~ d , ii il,.- • ,' ~ li ,• lbil #ti l !;ll tll lil , i ,. I1-1 ;illi lll 'lll It, '_' %1' Ill, li-Ii.--

1. Addr(if condition then X elue 1)=>Addr(X), if Addr()ýAddr~Y)

2. Let f==X(a,b,....) exp and f=X.(a,b) a-exp
Then Addr(f(z,y,....))= >fla-exp)[Addr(x)/a,Addr(y)/ b,. ..I

3. Addr(for i:l..h be Ali+c])=>Addr(A)[1+c..h~c], c a constant

4. Addr(for i:1..n be if i=1l then c else Ats-I])-=> Addr(A)(l..nJ, if A is not live and if
loop is executed in the reverse order(from n to I)'

5. Add~r([cp 1,exp 9,...,ezp~])=> (Addr(exp1),Addr(exp.,~...,Addr(exp,)I

6. Addr(cat(A[L../u1,B[7m..nl))ý=>Addr(A)[I..n1, if m=h+l and Addr(A)==AddilB

7. Addr(A:i- >v)= >Addr(A), if A is not live.

8. Addr(A.b:i- >v)= > Addr(A6) if A is not live

9. Addr(Ajil:j->v)=> Addr(A~i1), if A is not lv

Figure &1i: Reduction Rules in the absence of assignments

1. Addr(let definitions in value -expression end)ý> Addr(value-expresaion)

2. if an assignment A:=cxp is in a simple let-expression, then Addr(A)z=>Addr(exp)
uinless the terminal expression of Addr~exp) is a name and it is live in the reordering
chosen for the definitions and rest of the program graph.

3. if a parallel asignment. l,...l. 1:ýcp suich that Addr(exp) - > occuirs
in at simple le-xrss O w hn for each i, Addr(l j== > Addr(rj) tinless the termninal

expression or Addr(r1) is a naine and it is live in the reordering chosen for the
constructor andl the rest of' the prograrn graph.

Figure 5-2: Rules for Assignments in simple let-expression

hinter])rocediml r: an a1ys is flr(E o cimite thiS information here iiid also ini more comlplipatild

exampllles wfierv nion-locals are un pl-e~ntemd b~y Jlassiilg theml "IM paramieters. Procced jug with this

imloilformtfion, We dIerive. I he followi Big:
-if n=0 then Addr(a) else Addr61:n->.0)

assuming AddrU0(ia(i, i,n,))=>Addr(a)
->if n=0O then Addr(a) else Addr(ft) -- sincea ~ is not live
->Addr(t) -- by rewriting conditional

IIle.wn v':I, ;provin. Ie'II#, i.iI Pu y eft ir .~.iu on al 1l14. lie lioumnctiuii ilsitl I b~l , I ' 11,11-1-id wilt fil fir,

'l-III- l 'l u op iiiiizam ifl %Vu 1,m v Imi']i . Oiwi' I 'li II I mm l mie lt, fii l"Ii ii'rgIIIeeII-1 dlvii AIniimgm I miii-ý tlii4. %;lue1

1,t111- ju 1, uni. ' I. II uI I $Il.

*~. j ~q % %s.,u ~ a s.. ~ * ~ 4 ~ 0" ~ * -~tv.,J

12

parameter into a var paraueter .nd at the same time converts the function into a procedure. Before this

optimization can be implemented, we need to check that the array a is not live in the callee after its

transmission as a parameter.

To illustrate the rules for assignment in simple let-expression, consider the following fragment from the

puzzle program. Constructs that have not been considered so far have been rewritten using functions and

some simplifications also have been effected.

function place (i: pieceType; j: position;
puzzle: puztype; pieceCount: pctipe) : placestpe =

let
temp: integer: =class [i]
plim: position : = pieceMax [i]
puz: puztype : = letFunction (puzzle, plim, i J)
pc: pctype : = pieceCount: temp -> pieceCount [tempi -1;

result: position := leastFunction(j, size, puz)
in [result, puz, pc)
end

Assume it has already been discovered that Addr(letFunction(x, p, i, j)) => Addr(x) and

Addr(leastFunction(j, k, z)) => Addr(j). We would like to target the assignments and also find the

address expression of the function place. The first two definitions do not cause any interesting storage

sharing to happen. The third definition can be targeted so that Addr(puz)= >Addr(puzzle) since puzzle

is not live in the function after this use. No reordering is needed since this is the only use of puzzle. The

new-array can be evaluated in-place since pieceCount is not live. Hence, Addr(pc)= >Addr(pieceCount).

Finally, Addr(reoult)•-> Addr(j) from the address expression for leastFu]nction, since j is not live in

the function if the assignment for puz is evaluated before the assignment for result. The address

expression for the function ulahce is Addr([result, puz, pc[) which can be reduced to [Addr(),

Addr(puzzle), Addr(picceCourit)]. Notice that all of them involve formal parameters of the function

place and this signifies that the finictioin plae, returns as result sonle updated version of these formal

parameters. If copies are to be eliminated, lhese parametiers can be changed into var paranieer.t once it

hImm been shown] that. the ac;l-Ial inarua'iters of the I'||ctioni place are not live in any invocation. It might

be advantageous to restrict col|Vel'sion into var parainaters to structred values only to lesseni some of the

inln II lellit-in ation di fficulties e IcoliiiOlltertreI when Ihis is i tlelrilpted for scalars.

6. Fixpoint computation using reduction rules

To extellld i ilit 1114.lho of voIliijiliig addlvI(5' exp)I'S.iOiis 1n4iMl'iNXlOii~t ilnnil iol) d .Ie(elol d 1on 111. silnl)le

I:lln lguig , il h ;,,clioli I to S•.\1,. wv nIe'I soolln' Ilodiicatliolls ill I lh" •ill:tlll iles. Th' e IioAI illiportmnl' is i'lin

ol,'S'I{I 'i Ilillllcs oilhi-, Ib;; h ,o l;ll l ho, i l• l lo -l mi ld:, ;, I .ol-I{ov': .

13

8.1. Extension*

The new domain AddrExp is given by {j.-T') U F(X U 1') U $(A U B) where
Y.{Jyjy is a local name)
Y-{vI y is a local name)
B-{,[ml..Iy E Y; y is an array and 1,mn r RNI) - Y

The operators p and v have to be extended with the following cases:
p(a,b,g)

= g 3 (aa C a & bb E- b) & aa E F(Y) and 66 E F(B) & vice-versa
= g 3 (aa C a & bb C b) & aa E $1') and b6 E IJA) & vice-versa

=g 3 (Ga C a & bb C b) & aa e)jX) & bb e FEB) & vice-versa
Pe(Addr(a),Addr(b),g) if a or b C- F(Y1) U JIB) &Addr(a) or Addr(b) can be reduced

=Jp(pjqj1gj)ji:1..nj if a=LpjIi=I..nI, b==[qjji==1..n] & g--[gjji=1..nj

L'(0,b, g)
= 4Addr(a),Addr(b),g) if a or b E F(Y1) U FIB) & Addr(a) or Addr(b) can be reduced

Since p is associative, we will also use it for arbitrary number of arguments. The domain AddrExp still

reirains a cpo and ensures that the fixpoint computation always terminates.

Define Results of an expression as follows:
ReeAlte(let definitions in value-expre~eion end) =Resutst (value-expreasion)

Reeglta(Iet initial definitions
while/for cond do
redefinitions

giving value-expression
end) =Results (value -express4ion)

Result.(lf cond then c else a)= U(ResuLts(c), Reste'tt(a))

For other expressions, Results (rxprce9,iors) {v'rxpresa'eion}

The Results of a function body returns all the syliactic expressions that are embedded in let-expressions

or conditionals which may be returned as the value of the fiuuctioii.

8.2. Algorithmn

The first part consists or the propagationi orl a(ldre.ss- vpressiions by rixpoiiit. iteration. The address

expression or each function is first set t~o _j. For each funictioiu (in a topological order, if possible),

cornitpie p of all the memibers of the -set, Results(fhody) uinapped by Addr. Set, the Addr(f) cequal to

this value and p~rop)agate this i nformnation at. .1ll thle Sites if' the I'mictioii call lby prov isionially sharing all

the ii anies thiat are in tI icsan e stibsii s ili l a1 r*xpii 011 hs i as t-o be priov 151011 s ~li51ce add (ltioln i

iil~o-iuliatIoii mlight c11115c s0110' sel. of' Sli.iiiiigs to I)(- Iii('Oti'lvtIlI which thiet Ili;!V(to h 1(WdoilOIte. hlepi';t.

11iil tI 1lier(are 110 (.liaiige.s ili theii Addr cxr's om p UIgitio-41 for i'aili Imic 101.

Nvxt, all thc acutials corr'n-pIldiueg. to Ollee 11m,:111101.1 11:1 %%~I ll lm. I;lprIm'el hiakv Io imo eliqkel la', 1ion-

liFiiss iillvlY Ow, jetoO.isieil "l~ii~I. i 'i~~;id ean miel nIIli' ivei - iu

14

Let fLiet be the list of functions.
Set. the address expression of each runction f.Addr to J,
Compute a topological ordering ror fList if possible.

change :-true
while change do
change:-talse
for each function If E fList in the topological order (if possible) do

rnapEX:-'aP({Addr(resutst,)j i~1..n & results, E Resulte(f.body)))
diff :=-mapEx-f.Addr
It difi 0 nil then

change :=true
f.Addr.uumapEx
Propagate this new value at all the call sites or f

endfor
endwhile

Figure 6-1: Algorithm for computing address expressions of functions

made final using the information obtained.

0.3. Am example: counting permutations

To illu,%trate an example orfrixpoint computation for address expressions, we present the function

permute which counts the number of permutations of the elements of an array (Figure 6-2). The

Results of the function body of permute is given by ([A2, petr2 + 1] [A, etr + 11). Mapping

Results by Addr and computing mnapEz gives the address expression als [(A) U (All, {ctr} U

{ pctr)]. Here we have used the information that, A2=>--AIL and pctrR2=2pctr. This information has

to be propagated provisionally at. all the sites of the function call: hence Al sha-res storage with A and

pctr with dtr. Similarly AS shares storage with A.I(through old Al1). Furthermore, A2 shares storage

with Al, petr with pclr2. If we now comnpute the Addr vxprension of thme function body of pernmut. all1

the Results get reduced to 11A), (ctrfl. We now liave founmd the fixpoint. for the address expression of

the function i.i10nzuttf.

5.4. Divide and conquer problems

Avery iniportant stibcase of interprocediural ilnalysis occurs ill ci ivide awld commiquer algorit 11 ills. Such

algor ithnis have si gni ifi cant op port unity for pal rail lei isi mm, but i. trai g Itfo rw ard ilap Ic in e atat. so ms iwiy

prodluce a signisficait. immmiuml of cop~ies, thslo~ilig ally perfIolmm11amice a(Ivaimlp'.a.

(oimsidei I schelia mii f d ividte amid comlIluem' prcdil~lu,m ulsing" :iay s dw dleulta '1110111 mit ii usi mld

I at.l [he tsul's I.iltl 'Ill. ha ouibtiied bay suuimple cal:Ilmma mul (wimag I i'uimiuliuii cat):

%. Y - _v~.* . 5- "11 % %

type permlype=record X: art;; Y: Integer end

function permute (n : integer ; A: arr; ctr : integer) permType=
If, " <>. then
let
Af:arr; pctr2:Integer;

WA. petrel
let

Al: arr; pctr: Integer;
CAI, pctrj : permute(n-i, A, ctr);
k~integer := n-t

while k >= 1. do
k := old kc 1;
AS: a";
[AS, pctr) permute (n-1. swap (old At,n.old k), old par);
Al : =swap (AS, n, old k)

giving (Al. pctr)
end

In CA2, petr2 + 1)
end
else [A, ctr + 1]

end;

Figure 8-2:- Program to compute the number of permutations of an array

if 1=1 then h (A)
else cat(f~fior i:1. .1' be A~i]), f(for i:1- 1-I' be A(1'+il)))

Since the base recursion involves the single element of the array, the ftinction body can b~e evaluated

without using more than 0(1) space, if it can be proved that there is no overlap inl the parameters; palksed

to the recursive calls of f. That is, there is possibility of sharing amongst, the paraileters among

successive calls to f, if we show that there is no overlap in the elements accessed lby the array former in

* the argument.. Realization that this operation call be done in place leadsi to a very efricient. progrim since

the non-optimized program has to allocate and deallocate arrays at each level or the rvcursioii in addition

t~o the copy of the result from one level of the recursion to the next. Furtherimore, if we assume that. cat

dhoes not allocat~e storage or perform a copy if the objects are already adjacent. then w(e (-,In dluingate tile

temporary stoninge andl copying on return.

Given a1 set of n-Ctirsiv4e and nonl-ectirsiVe riiict~ionls whichl implenleent a divide and coiq1ragorithml,

we nleedl to rind owt -wletliei iii-j)ltce I1loifXiicai~toii or Ole data-st igIcI(III- Is p~oss.iblel 'Ild :Irv. Tlo do thlis.

we lived~ to Find out, [low illiplt. (latt-si ruclctir is slilbliVjded;(l am1 w 11(14 I le eslit Is colimujos'ld (ounputimug

tihe w~l(IlV5 '(Xpile$sioII frou ivuch , luuuuutou duliuuit ion gi%"Nves e(uct Yt 1111, 111ilhuuuuu:utoll iu'l~(i~

(J14iI "il'riibw how) Ilw a~ddress cvmars'ioI, ol i Iuugucetionuuml iis dl'Iluui' III Iumuu-11,I 0 i'O

\vuptv.'ýIuous (d, it's ;uugilm-umu 1"t. 'li i' I i(IOiItS logI I III, u1(1(lI5..SJ. ()I I Wu' 1114 llu- VI ((,iiuiiulcil blv 'ulf- I'll

16

and by use of the reducing rules to simplify the expressions of the function bodies. However, type

parameters make it possible to cr,'ate type uncheckable expressions by using non-terminating function

applications and looping constructs when defining index ranges for arrays. This may prevent address

expressions to be computed. If index ranges and indices are assumed to be of a restricted syntactic form(

for example, linear induction variables) for which symbolic analysis is helpful in determining simple

algebraic properties and identities, the address expressions may be computable. This process is most

easily understood from the viewpoint of an example (Figure 6-3).

-- n is a power of 2
type arr(n:integer)= array[l. .n of integer;

function reverse CX: art (n)) :arr(n)=
If n=1 then X
else

let A:arr(n) :=X
for i:1. .n/2 do
A:=(old A:i->old A(n-i+13) :n-i+1 ->old A(i)

giving A
end;

function sortbitonic (X: arr (n)) ar
If n=1 then X
else

let A:arr(n) :=X
for i:1. .n/2 do

A:=if old AM) < old AU+n/2] then old A
else (old A;i->old A[i+n/2]):

(i+n/2)-)old A[i]

giving
let
lower:arr(n/2) for i:1. .n/2 be A(i]l
upper:arr(n/2) for i:1..n/2 be A[i+n/2];

in cat(sorlbilonic (lower). sorfbi.oiei (tpp cr))
end

end

function ,erge(X:arr(n) ;Y: arr(r)))
.qortbitonic(cat CA, rcvcrre(Cr)));

function sort (: arr (n)) arr (n)=
if n=1 then .\

else
let
lou.cr:arr(n/2) := for i:1. tt/2 be .\ ;
upprr:orr(n/2):= for i:1. in/2 be \'L/'+?1/2]

in ,ii'rq.l (.'tni (hI'~,m~) , O~ . ('t (,U,,))

end
Figure 0-3: I fili,, ý.,li

&

17

Consider the function 8ort. It is clear that X can be sorted in place without any additional array storage

or any copies. Determining that this is so in a compiler is a non-trivial matter. This depends on detecting

the following in the process of proving consistency.

1. touter and upper are nonoverlapping (i.e., 1..n/2 and n/2-i1..n are non-overlapping)

2. the parameter X and the result of the function sort can share the same storage.

The last condition is the moot complex. We show the initial equations that are written for the address

expressions, and the simplification of the equations. Note that we require other optimization steps to

occur to achieve the desired results. These steps are noted.
revierse
=>XX. X U Addr(redefining let-expression)
=>XX. X uA
=>\Xx. x u X
=>>Xx. x

Hence reverse(X) can be done without using extra arrays. Now, consider the function 8ortbitonic-

abbreviated as Ab.
ab

=>XX. X U Acidr(rederining let-expression)
=>XX. X U Addr (simple let-expression)
=>XX.X U Addr (catCub (lower), ab(upper)))

=>,\X. X U P(Addr(.sb (lower)). Addr(sil(tpper)),gOct

=>,\X. Xu v(sb (A [I. .n/21) all(A [n/2+1. .r),g cat)

c&at

-- coalescing of A & X

The fixpoint iteration is as followvs:
ab0 =XX. I
ab1 =XX X U -L:=~XXX

ab,,=XXX L4J1../2jXii2+ 111111.bcat.)ý

Hence, Addr(X) is a rixpoint sohitioii foit Addr(,9b(.V)), anid -similarly, Addr(X) is a fixpoinit. soluitioti [ot-

Addr(.sorl(X))

From t~he above mnalysis, we call cofltihilC thlat sort(i\) cani be accompIIlished in place. Note thlat this

pl-ocess is both subtle mnd easily Ilega~tedl if the fivuictiolli lcv'~r.9r is defiiied iii a diffrent.e way, say:3

for i:1. it be Xfni-i+1]t'leli IIIadd tiol~l all-a isilv ded all oiv c lll l' oll ilt. Ihat -o l c II e d ili il-plcI
Q foe 91 g

7. Experimental results
A compiler for a substantial part of SAL has been implemented to verify the effectiveness or the

approach. This compiler generates an intermediate code called UCODE and has many other aspects we

have not discussed. They are fully covered in a thesis [7].

The timings for the following programs on a MicroVax-II (without counting the output times except

when negligible) were collected using the UNIX time command.

* Bubblesort: sorts an array of 1000 elements.

* Life program: 500 iterations on a board 10 by 10 (with border 12 by 12)

* Matrix multiply: of two 100 by 100 integer matrices

* 8 queens: Finds all the 92 solutions.

* pussle: finds the solution. This is a very highly recursive and computationally demanding
program for solving a three-dimensional puzzle. Often used for benchmarking C and other
languages on workstations.

"• quicksort: sorts the same array as the bubblesort does(1000 elements)

"* bitonic sort: sorts an array of 1024 elements(has to be a power of 2)

perm: counts the number of permutations of an array of 7 elements. This is iterated 5 times.

"* cyk: the Cocke-Younger-Kasami algorithm parses an input string oF 128 a's for the following
ambiguous grammar:

A- a

A -- AA

9 SIMPLE: transliteration of the NEWRZ program, used in hydrodynamic calculations,
conshlered by Ellis [I0

The user execution tiint-N(withouti 1/O) in seconds are given in Table 7-1. The various opthinization levels

are as follows:

"* No Opt.; No opt.imization wam done

"* Optl: All opt.i mizations with no rangecheck eliniination.

"* Opt12: All optin izations with rangvcheck clininatioui by analysis.

"* O1,:';: All optilmizal ions with ragechlckig I luiriued ofT

"* Opt. l: All opi)IIIIiZ;ItiiolS pills ,onlic V1ry , il lN. Ol illizalioll (n tC(D()I)l" g-.irattd by
insp'cl loll of crode (pip) -hole otalliliz:a.ioil in :All |he ex:tuplh a;ld I il;ll1ri:ll nloved i ll

"• pv"-0): 1".x(oi1, iim ,' fI'r I ,rki.hcy I' ,'ml;•11 1. i ghl• h .d ()pfillimli o~llO I 1,

19

INo Opt lOpti lOpt2 Iopt3 IOpt4 Ipc -0 Itimel

IBsort 11913.2 126.6 117.5 117.5 15.8(*) 14.9 1 39% 1
ILIfe 123.4 122.6 118.4 118.4 114.5 18.2 177% 1
lam 172.8 182.2 148.2 148.2 127.7 132.3 i 86% 1
18 11.3 11.3 1.2 11.0 10.8 13.4 1 23% 1
simple 119.9 11.6 11.6 11.2 1.0 1.1 I 91% 1

Icyk 158.0 158.9 141,9 139.0 130.1 116.1 1187% 1
lpuzz 1393.6 132.6 130.7 124.0 118.8 115.8(+)1119% I
quick 112.5 12.8 12.8 11.5 11.2 11.3 1 92% 1

IbitonIel14.3 12.9 12.9 12.5 12.2 11.6 1138% I
perm 15.5 13.5 13.5 12.5 12.3 12.5 I 92% 1

*) : Time with UOPT
(+): The Pascal version Is faithful to the SAL version; if this is not

attempted, we get a time of 13.3s

Table 7-1: Execution times of benchmarks in SAL and Berkeley Pascal.

We list also %time which is Opt4/pc -0.

It must be mentioned that UOPT [41, which is a UCode to UCode optimizer, could not be used except

for bubblemort. Hence,- there is substantial possibility for improvement in the execution times by use of

register allocation, peephole optimization and other standard optimizations considered in compilers for

imperative languages [1]. The execution times for bubblesort with and without UOPT are instructive. We

believe that the timings could be improved by as much ais 50% or more with an UCODE to UCODE

optimizer.

To give another idea for the possibilities for improvement., we have optimised the UCODE generated by

looking just for the simplest store-load peephole optimizations. Op14 in the table rerers to peephole

optimization (lone by inspection. In 2 cases (puzzle, malrix multiply) one invariant has been moved out of

the loops. Even with all these handicaps, it is remarkable that. we report execution times for six out of

ten programs better than the best timings for Berkeley Pascal (pc -0). The program for life and eyk

suffer because or the inability to define arrays partially in t~he SAL language.

8. Conclusions
It is. 1 wry gratifying to See fairly theoretical approadle's like aibstract. interpretation have sucli a direct.

)earing on critical i.s"tes like copy .liminatiog. 0

"I-

20

References

[1] Aho, A. V., Ullman, J. D.
principles of Compiler Design.
Addison-Wesley, 1977.

[21 Adrienne Bloss, Paul Hudak.
Variations on a strictness analysis.
in ACM symposium on Lisp and Functional Programming. ACM, Aug, 86.

[31 Celoni S.J., J.C., Hennessy, JL.
SAL: A Single-Assignment Language for Parallel Algorithms.
Technical Report, Computer Systems Laboratory, Stanford University, July, 1981.

[41 Chow, F.
A Portable Machine-Independent Global Optimizer - Design and Measurements.
PhD thesis, Stanford University, December, 1983.

[5] Cousot and Cousot.
Abstract interpretation.
In Annual ACM Symposium on Principles of Programming Languages. ACM, Jan, 77.

[6] Ellis, J.R.
A Compiler for VLIW Architectures.
PhD thesis, Yale University, December, 1984.

[7] Gopinath, K.
Copy elimination in single aesignient latnquages.
PhD thesis, Stanford University, June, 1987.

[8] Hudak and Young.
High-order strictness analysis in untyped lambda calculus.
In Annual ACM Symposium on Principles of Programming Languages. ACM, Jan, 1986.

[9] Paul Hudak.
A semantic model of reference counting and its abstraction
In ACMvI yimposium onl Lisp find Functional Programming. ACM, Aug, 86.

[10] Alan Mycroft.
Abstract intcrpretatio(irt Optisiig h ',tii.fuiiititito for applicative programs.
PhD thesis•, Edinlbiurghi Univ(,.1-iOv, ýZ.

Jl1l Jerald Schwarz.
Verifying the safe usc of (iesv.iru.ive olwrClt o•lls ill applic l, ive programs.
In Progrjarn hraonsforiwdl ii.-- IP'rc•• diqty of 1h(;h'rd ht I *•yni . on Progra't ining. 1978.

1121 \Vadlet.
IList, leslivs-, is bilktcr 1.11,111 IV•i ,•.:~z evahliation• mid((-ll'itbage collection at., (.ompiilv tism ..
In11C'AI .i!uj1o.i i , L ui. ,,, PuItrtonal Irogra ofin g. ACM, Aulg, I .tt. .

q•

I,

